Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Molecules ; 27(10):3256, 2022.
Article in English | ProQuest Central | ID: covidwho-1871385

ABSTRACT

DNA integrity is an important factor that assures genome stability and, more generally, the viability of cells and organisms. In the presence of DNA damage, the normal cell cycle is perturbed when cells activate their repair processes. Although efficient, the repair system is not always able to ensure complete restoration of gene integrity. In these cases, mutations not only may occur, but the accumulation of lesions can either lead to carcinogenesis or reach a threshold that induces apoptosis and programmed cell death. Among the different types of DNA lesions, strand breaks produced by ionizing radiation are the most toxic due to the inherent difficultly of repair, which may lead to genomic instability. In this article we show, by using classical molecular simulation techniques, that compared to canonical double-helical B-DNA, guanine-quadruplex (G4) arrangements show remarkable structural stability, even in the presence of two strand breaks. Since G4-DNA is recognized for its regulatory roles in cell senescence and gene expression, including oncogenes, this stability may be related to an evolutionary cellular response aimed at minimizing the effects of ionizing radiation.

2.
Chem Commun (Camb) ; 58(13): 2176-2179, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1642026

ABSTRACT

2'-5'-Oligoadenylate synthetase 1 (OAS1) is one of the key enzymes driving the innate immune system response to SARS-CoV-2 infection whose activity has been related to COVID-19 severity. OAS1 is a sensor of endogenous RNA that triggers the 2'-5'-oligoadenylate/RNase L pathway. Upon SARS-CoV-2 infection, OAS1 is responsible for the recognition of viral RNA and has been shown to possess a particularly high sensitivity for the 5'-untranslated (5'-UTR) RNA region, which is organized in a double-strand stem loop motif (SL1). Here we report the structure of the SL1/OAS1 complex also rationalizing the high affinity for OAS1.


Subject(s)
2',5'-Oligoadenylate Synthetase/metabolism , Immunity, Innate , RNA, Viral/metabolism , SARS-CoV-2/genetics , 5' Untranslated Regions , Base Sequence , Binding Sites , COVID-19/pathology , COVID-19/virology , Humans , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/isolation & purification
3.
J Phys Chem Lett ; 12(42): 10277-10283, 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1469948

ABSTRACT

Guanine quadruplex (G4) structures in the viral genome have a key role in modulating viruses' biological activity. While several DNA G4 structures have been experimentally resolved, RNA G4s are definitely less explored. We report the first calculated G4 structure of the RG-1 RNA sequence of SARS-CoV-2 genome, obtained by using a multiscale approach combining quantum and classical molecular modeling and corroborated by the excellent agreement between the corresponding calculated and experimental circular dichroism spectra. We prove the stability of the RG-1 G4 arrangement as well as its interaction with G4 ligands potentially inhibiting viral protein translation.


Subject(s)
COVID-19/genetics , G-Quadruplexes , Genome, Viral , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/virology , Humans , Models, Molecular , Nucleic Acid Conformation
4.
J Phys Chem Lett ; 11(14): 5661-5667, 2020 Jul 16.
Article in English | MEDLINE | ID: covidwho-1387115

ABSTRACT

Coronaviruses may produce severe acute respiratory syndrome (SARS). As a matter of fact, a new SARS-type virus, SARS-CoV-2, is responsible for the global pandemic in 2020 with unprecedented sanitary and economic consequences for most countries. In the present contribution we study, by all-atom equilibrium and enhanced sampling molecular dynamics simulations, the interaction between the SARS Unique Domain and RNA guanine quadruplexes, a process involved in eluding the defensive response of the host thus favoring viral infection of human cells. Our results evidence two stable binding modes involving an interaction site spanning either the protein dimer interface or only one monomer. The free energy profile unequivocally points to the dimer mode as the thermodynamically favored one. The effect of these binding modes in stabilizing the protein dimer was also assessed, being related to its biological role in assisting the SARS viruses to bypass the host protective response. This work also constitutes a first step in the possible rational design of efficient therapeutic agents aiming at perturbing the interaction between SARS Unique Domain and guanine quadruplexes, hence enhancing the host defenses against the virus.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/genetics , Coronavirus Infections/virology , G-Quadruplexes/drug effects , Pneumonia, Viral/virology , RNA, Viral/chemistry , RNA, Viral/genetics , Betacoronavirus/drug effects , COVID-19 , Dimerization , Humans , Models, Molecular , Molecular Dynamics Simulation , Pandemics , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
5.
J Proteome Res ; 19(11): 4291-4315, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-960292

ABSTRACT

The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of key viral processes. In this Review, we focus on how in silico studies have contributed to the understanding of the SARS-CoV-2 infection mechanism and the proposal of novel and original agents to inhibit the viral key functioning. This Review deals with the SARS-CoV-2 spike protein, including the mode of action that this structural protein uses to entry human cells, as well as with nonstructural viral proteins, focusing the attention on the most studied proteases and also proposing alternative mechanisms involving some of its domains, such as the SARS unique domain. We demonstrate that molecular modeling and simulation represent an effective approach to gather information on key biological processes and thus guide rational molecular design strategies.


Subject(s)
Antiviral Agents , Coronavirus Infections , Drug Design , Molecular Docking Simulation , Pandemics , Pneumonia, Viral , Spike Glycoprotein, Coronavirus , Betacoronavirus , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Humans , Molecular Dynamics Simulation , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL